Algorithms for computing sparsest shifts of polynomials in power, Chebyshev, and Pochhammer bases
نویسندگان
چکیده
We give a new class of algorithms for computing sparsest shifts of a given polynomial. Our algorithms are based on the early termination version of sparse interpolation algorithms: for a symbolic set of interpolation points, a sparsest shift must be a root of the first possible zero discrepancy that can be used as the early termination test. Through reformulating as multivariate shifts in a designated set, our algorithms can compute the sparsest shifts that simultaneously minimize the terms of a given set of polynomials. Our algorithms can also be applied to the Pochhammer and Chebyshev bases for the polynomials, and potentially to other bases as well. For a given univariate polynomial, we give a lower bound for the optimal sparsity. The efficiency of our algorithms can be further improved by imposing such a bound and pruning the highest degree terms.
منابع مشابه
Sparse Polynomial Interpolation in Nonstandard Bases
In this paper, we consider the problem of interpolating univariate polynomials over a eld of characteristic zero that are sparse in (a) the Pochhammer basis or, (b) the Chebyshev basis. The polynomials are assumed to be given by black boxes, i.e., one can obtain the value of a polynomial at any point by querying its black box. We describe eecient new algorithms for these problems. Our algorithm...
متن کاملOn Group Fourier Analysis and Symmetry Preserving Discretizations of PDEs
In this paper we review some group theoretic techniques applied to discretizations of PDEs. Inspired by the recent years active research in Lie groupand exponential time integrators for differential equations, we will in the first part of the article present algorithms for computing matrix exponentials based on Fourier transforms on finite groups. As an example, we consider spherically symmetri...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملInterpolation of Shifted-Lacunary Polynomials [Extended Abstract]
Given a “black box” function to evaluate an unknown rational polynomial f ∈ Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity t ∈ Z>0, the shift α ∈ Q, the exponents 0 ≤ e1 < e2 < · · · < et, and the coefficients c1, . . . , ct ∈ Q \ {0} such that f (x) = c1(x − α)1 + c2(...
متن کاملA new algorithm for computing SAGBI bases up to an arbitrary degree
We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which cause a low level of complexity and computational cost. We then use it to solve the membership problem in subalgebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 36 شماره
صفحات -
تاریخ انتشار 2003